Phosphorylation of the MBF Repressor Yox1p by the DNA Replication Checkpoint Keeps the G1/S Cell-Cycle Transcriptional Program Active

نویسندگان

  • Catia Caetano
  • Steffi Klier
  • Robertus A. M. de Bruin
چکیده

BACKGROUND In fission yeast Schizosaccharomyces pombe G1/S cell-cycle regulated transcription depends upon MBF. A negative feedback loop involving Nrm1p and Yox1p bound to MBF leads to transcriptional repression as cells exit G1 phase. However, activation of the DNA replication checkpoint response during S phase results in persistent expression of MBF-dependent genes. METHODOLOGY/PRINCIPAL FINDINGS This report shows that Yox1p binding to MBF is Nrm1-dependent and that Yox1p and Nrm1p require each other to bind and repress MBF targets. In response to DNA replication stress both Yox1p and Nrm1p dissociate from MBF at promoters leading to de-repression of MBF targets. Inactivation of Yox1p is an essential part of the checkpoint response. Cds1p (human Chk2p) checkpoint protein kinase-dependent phosphorylation of Yox1p promotes its dissociation from the MBF transcription factor. We establish that phosphorylation of Yox1p at Ser114, Thr115 is required for maximal checkpoint-dependent activation of the G1/S cell-cycle transcriptional program. CONCLUSIONS/SIGNIFICANCE This study shows that checkpoint-dependent phosphorylation of Yox1p at Ser114, Thr115 results in de-repression of the MBF transcriptional program. The remodeling of the cell cycle transcriptional program by the DNA replication checkpoint is likely to comprise an important mechanism for the avoidance of genomic instability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DNA replication checkpoint promotes G1-S transcription by inactivating the MBF repressor Nrm1.

The cell cycle transcriptional program imposes order on events of the cell-cycle and is a target for signals that regulate cell-cycle progression, including checkpoints required to maintain genome integrity. Neither the mechanism nor functional significance of checkpoint regulation of the cell-cycle transcription program are established. We show that Nrm1, an MBF-specific transcriptional repres...

متن کامل

Linking DNA replication checkpoint to MBF cell-cycle transcription reveals a distinct class of G1/S genes.

Reprogramming gene expression is crucial for DNA replication stress response. We used quantitative proteomics to establish how the transcriptional response results in changes in protein levels. We found that expression of G1/S cell-cycle targets are strongly up-regulated upon replication stress, and show that MBF, but not SBF genes, are up-regulated via Rad53-dependent inactivation of the MBF c...

متن کامل

The DNA damage and the DNA replication checkpoints converge at the MBF transcription factor

In fission yeast cells, Cds1 is the effector kinase of the DNA replication checkpoint. We previously showed that when the DNA replication checkpoint is activated, the repressor Yox1 is phosphorylated and inactivated by Cds1, resulting in activation of MluI-binding factor (MBF)-dependent transcription. This is essential to reinitiate DNA synthesis and for correct G1-to-S transition. Here we show...

متن کامل

DNA replication stress differentially regulates G1/S genes via Rad53-dependent inactivation of Nrm1.

MBF and SBF transcription factors regulate a large family of coordinately expressed G1/S genes required for early cell-cycle functions including DNA replication and repair. SBF is inactivated upon S-phase entry by Clb/CDK whereas MBF targets are repressed by the co-repressor, Nrm1. Using genome-wide expression analysis of cells treated with methyl methane sulfonate (MMS), hydroxyurea (HU) or ca...

متن کامل

The Fission Yeast Homeodomain Protein Yox1p Binds to MBF and Confines MBF-Dependent Cell-Cycle Transcription to G1-S via Negative Feedback

The regulation of the G1- to S-phase transition is critical for cell-cycle progression. This transition is driven by a transient transcriptional wave regulated by transcription factor complexes termed MBF/SBF in yeast and E2F-DP in mammals. Here we apply genomic, genetic, and biochemical approaches to show that the Yox1p homeodomain protein of fission yeast plays a critical role in confining MB...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011